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p. 20, line +13: ...directed to the right...
p. 39, Figure (9): The arrow for bo should be directed upward.

p. 43, line +1: ...of the '®' operator...

p. 45, line +8: colored p and s, respectively.
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A mathematical model for systolic architectures is sug-
gested and used to verify the operation of certain systolic
networks. The data items appearing on the communication

links of such a network at successive time units are

represented by data sequences and the computations performed _

by the network-cells are modeled by a system of difference
equations involving operations on the various data
sequences. The input/output descriptions, which describe
the global effect of the computations performed by the net-
work, are obtained by solving this system of difference
equations. This input/output description can then be used
to verify the operation of the network. The suggested
verification technique is applied to four different systolic

networks proposed in the literature.
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1. Introduction.

Systolic architectures, pioneered by H. T. Kung, are
becoming increasingly attractive due to continuous advances
in VLSI technology. This type of network architectures has
two properties very desirable in VLSI implementations;
namely, regularity and the local nature of the interconnec-

tions.

A systolic network can be viewed as a network composed
of a few types of computational cells, regularly intercon-
nected via local data links and organized such that streams
of data flow smoothly within the network. For an introduc-
tion to systolic architectures, we refer to [10] where

further references to specific examples are given.

As an introductory example, we briefly review a simple
systolic network for the computation of one dimensional con-
volution expressions (10]. More specifically, given a

sequence of numbers (xl, Xor - xn}, and a sequence of
weights (wl. Wor oe. wk}, we want to compute the sequence

(yl, Yor - 7n+1-k} where each Yy is defined by:

k

Figure 1 shows the building cell of the 1-D convolution
network under discussion. It is a multiply/add cell with a

one word memory to store a real number w.

...........
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At each clock pulse, the cell receives two input data items;

Xin and Yin’ performs its computation and delivers at the

next clock pulse the outputs X = X5 and

Yo = Yin * W X Figure 2 shows three such cells -con-

nected into a network that performs the convelution calcula-

tion for the case k=3. The elements xl, xz, xn are

pumped in at the left end of the network, each separated
from the other by one time unit, and zeroes are pumped in ,at
the right end. To illustrate the operation of the array, we
show in figure 3 the relative location and value of each
data item at times t=3,4,5 and 6, where t=1 is the time at
which the array started its execution. By following the data
paths, we can convince ourselves that the output of the

array will include the sequence {Yl. Yyr «- Yn+l-k}'

Although the concept of systolic networks is very well
developed, the notation used to describe the input and out-
put data of a systolic network is sometimes ambiguous and
reflects poorly the relative timing of the different data
streams. Moreover, no rigorous techniques appear to be
known for a formal verification of the operation of such
networks. To the knowledge of the authors, there has been
only one attempt [6]) to verify formally the operation of
systolic networks based on a proof technique used in the
verification of distributed systems [4]. This technique
does not make use of the special properties of systolic net-

works and hence gives only rather general results.
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In this paper, we suggest a technique designed specifi-
cally for verifying the operation of systolic networks. In
section 2.1 the data sequences are introduced to represent
the data appearing on the communication links at successive

time intervals. In the same section, we discuss the causal
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operators which model the computations performed by a cell
of the network. This concept was primarily inspired by

corresponding approaches in systems theory (7].

ety ey r""’ g

In section 2.2 and 2.3, we pte#ent the mathematical
model on which the \.retification technique is based. This
model carries some of the properties of a model called
*automaton networks®" [3] which in turn is a modification of
the von Neumann cellular array [5,11). However, the two
models have more differences than similarities, and are used

in completely different contexts.

In section 3 we describe the different steps of the

suggested technique and give a simple illustrative example.

Finally, in sections 4,5 and 6, we demonstrate the tech-
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E'_.j'. nique by applying it to the verification of some realistic
systolic networks that have appeared in the literature.
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2. An abstract systolic model.

2.1. Data sequences and causal relations.
We define a data sequence to be an infinite sequence
whose elements are members of the set RO-R U {6), where R

is the set of real numbers and 0 denotes a special element,
not belonging to R, called the "don't care element". We
extend each one of the four basic arithmetic operations *op”

“defined on R to R, by adding the rule that the result of
any such extended arithmetic operation on Ro involving 0O

shall equal 0. That is if ‘op' = ‘'+', '=', '*' or '+', then

8 'op' X = X 'op' 6 = O for all XeR,

Clearly, operators may also be defined directly on

R,. For example, we will consider later the binary operator

@ such thqt for any x,yeRo,

X@y =x +y, if x,y»0; x®06=060@x =x (2.1)

Two other operators that will be used in section 6 are the

operators min, and max, defined on an'or:dered pair (x,y).
x,yeRa by
min{x,y) if x,y=0
mino(x,y) =
Y if x=0 or y=0

and
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where min{)} and max{)} carry the usual meaning on R.
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'g max{x.,y) if x,y=»d

- maxy (x,7) -

g x if x=0 or y=8.
o

Let N be the set of positive integers, then any data
‘! sequence 7 is defined as a mapping from N to Ro; that is,

the image element 7(i), ieN, is the 1th element in the

sequence. The set of all data sequences, that is the set of

all such mappings, willi be denoted by R; = {9 | 'n:N~R°}.
: *
Any arithmetic operation on R‘5 is extended to Rb by

applying the operation element-wise to the elements of the

sequences with 0 being the result of any undefined opera-

‘g' tion. For example, if 'op' i8 a binary operation defined on
o

R,, then for all Ny+M,€6R,, we have 7, 'op’ n, = ny where
oo

for all ieN, n,(i) is given by

a4

n,(1)'op'n, (1) if m4(1) is defined

'2: 03(1)

g J

. -] otherwise.

:::,;i We will alvo use scalar operations on sequences. For
& example, ‘' e : alar product of a sequence neno and a number

2R

wéR 1is defined as the segquence {( = w . 7 cR; for which

e




...........

‘ (i) = w n(i), ieN.

Given the previous definition of data sequences, we

*

define the set of bounded data sequences Eo c R°

to contain

those sequences having only a finite number of non-8 ele-

ments. It is then natural to introduce the termination
function T:§°~N such that for any "GEO' T(n) is the posi-

tion of the last non-8 element in 7; in other words:

ar for any.neib,T(n)si - n(i)#d and 7(j)=06 for jii.
in this paper, we will denote bounded data sequences by
small greek letters and simply refer to them as sequences.

‘! This will not cause any confusion because we will never con-
sider anything but bounded data sequences.

to RO'

!2 In addition to the opetatoré extended from Ro

we may also define operators directly on Eo. In general,

an n-ary sequence operator I' is a transformation r:[io]"~§°

where [EO]"-oniox...Eo is the cartesian product space of n

copies of EO‘ Two basic unary operators that will be fre-

quently used in thisvpaper are the shift operator nk and

the spread operator oF defined by:

a*¢ = 9 and of¢ = ¢,

where

P Sy v - P o e PN TN,




n(i) = €(i-k) ieN.

€2y i-1,re2,2v43,..., (n-1)r+n, ...

((1) =

L] otherwise.
More descriptively, nk inserts k 0-elements at the begin-

ning of a sequence, while of inserts r b6-elements between
every two elements of a segquence. For example if

§=a;,a,,a4,8,,0,0,... then T({)=4 and

€(1) = a; la1aT(€)

ﬂ3E = O,O,O,al,a2,33,a4,6,6,6,...

92€ - al,O,O,aZ,O,O,a3,0,6,34.6,6,...

It is easy to verify that the termination function generally

satisfies

T(n®g) = T(E)+k

T(0"€) = (x+1)T(&)-1

It is also clear tﬁat we can define a sequence operator
by combining previously defined sequence operators. For
example we might define an operator r:ioxiox§°~§° as fol-
lows:

Fr(eg/m,{) = nlé + 2 * (]

where square brackets are used for grouping and parenthesis
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for enclosing the arguments of the operator.

We next define a causal operator to be any n-ary
sequence operator P=[§°]n"§o which satisfies the causality

th

property in the sense that the i element of any of its

operands can only affect the jth element of its image for

j>i. In order to formulate this more precisely, assume that
for any given sequences 17re§o r=1,2,...,n, the image under

r is e-r(nl,..nr,..ipn). Then T is a causal operator if by

]
replacing any operands N, by another sequence n, satisfying

n (L) = n.(t) let (i

]
the resulting image ¢' = r("l"'"r"'"n) satisfies

§'(t) = &(t) lstei
In other words, the value of ¢(i) depends only on the

first i-1 elements of "r' lsrsn.

Similarly, we may define weakly-causal operators for

h

which the it element of the image sequence ¢(i) depends

only on the the first i elements of the operands L lsrsn

instead of the first i-1 elements. With this, it is easily

seen that the combination l'l l"2 (or 1'2 I'l) of a causal

operator l‘l and a weakly-causal operator I‘z is a causal

k

operator. For instance, the shift operator N is causal

. . e et e e B vt ree s itee e Be e Bmans Teees . Senien
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and the spread operator eF is weakly causal; hence, the

k

combined operator N of is causal.

2.2. The abstract model.

In order to define the mathematical model used in our
verification technique, we define as usual a loop-less mul-

tigraph G(V,E,p_,v,) to be composed of

(a) a set V of nodes;
(b) a set E of directed edges;

(c) two functions ¢_,¢_ :E~V. satisfying the condition

that for any edge ecE,

v_(e) » v (e) (2.2)

For each edge ec¢E, the nodes y_(e) and ¢+(e) are the

source and destination node, respectively, of that edge.
Clearly, the condition (2.2) prevents any direct 1loops in
the graph. This definition of a multigraph allows any two
nodes to be connected by more than one edge in the same
direction, a property that may be useful when we represent

systolic networks by this abstract model.

As usual in graph terminology, for any node veV, the
edges (e;p_(e)=v} directed out of v are termed the OUT
edges of v, while the edges (e;¢+(e)-v} directed into v are

termed the IN edges of v. Accordingly, the IN-degree and

o AU AP SO U - s - . ia oA P - A B o

P |
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OUT-degree of v are the number of IN edges and OUT edges of
v, respectively. Any node veV with IN-degree zero or OUT-
degree zero is called a source or a sink, respectively. All
other nodes are called interior nodes of G. We shall use

the notation V_, VT and VI for the subsets of V containing

the source, sink and interior nodes of V, respectively. Of

course, the condition Vs u VT U VI = V is always satis-

fied.

With this notion of a multigraph, we define our
abstract systolic model to be composed of the following com-

ponents.

[(Al] A multigraph G(V,E,e_,v_ ).

[A2] A coloring function col:E-~C which maps E into a

E'
given finite set of colors C_, and hence assigns a color
to each edge in E. The coloring function is assumed to
satisfy the condition that the different IN edges of a node
have different colors, and correspondingly that the dif-
ferent OUT edges of a node have different colors. Edge

colors y-col(e), will be denoted by lower case letters.

[A3] For each edge ec¢E, a sequence eeei is specified.

0

[A4] For each interior node ve¢V with IN degree m and OUT
degree n, we are given n causal m-ary operators r::[ao]m“io

which specify the *node 1/0 description”. More

.....
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specitically, if nj, j=1,2,...,m and ei, i=1,2,...,n are
the sequences associated with the IN and OUT edges of v,
respectively, then the n relations

ta ré(nl.nz

£ 'ooolnm) 1-1'21.-.111

are the 1/0 description of v. The different IN and OUT
edges of v are distinguished in the 1/0 description by their

colors.

Since by condition [A2] all edges terminating at a
given node v have different colors, it follows that any edge
e<E is uniquely identified by a pair (y,v), where y=col(e)
and veo_(e). To simplify the notation, the pair (y,v) will

often be written in the form Yyr and the sequence associ-
ated with that edge will be identified by the symbol L

where we replaced the letter y by its corresponding greek

letter 7.

Por practical applications, it is generally desirable
to identify the nodes of the network by appropriate labels
which correspond to the problem at hand. This means that we
introduce a set L of labels together with a one-to-one func-
tion y:V-L from V onto L. In our examples, we usually

identify directly the nodes with their labels.

After defining the general abstract model, we next
show how it can be used to define a general systolic net-

work.
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2-3. The general systolic network.

By giving a phyaical‘interptetation to each component
in the general abstract model we obtain a general systolic
network. The basic idea of this intexrpretation may be sum-

marized as follows:

Each interior node represents a computational cell and
each source/sink node corresponds to an input/output cell
for the overall network. To distinguish in our figures the
computational cells from the I/0 cells, we depict computa-
tional cells by circular nodes and I/0 cells by square

nodes.

Each edge xveB represents a unidirectional communica-

tion link between the two cells it connects. The sequence

associated with x, then comprises the data items that

appeared on it in consecutive time units. More specifi-

cally, if &, is the seguence associated with X, then the

th

i element of &, namely ev(i) is the data item that

appeared on 3 at time t=i units, where t=l1 is the time at

which the network started its operation.

For an interior node, the node 1/0 description
describes the computation performed by the cell correspond-
ing to that node. We illustrate this with two simple exam-
ples:

EX 1l: The node shown in figure 4 represents a simple
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X y 2in o
n=0Q¢ o Nin
Figure §42 Figure 552

latch cell which produces at any time t>1 on its output
link the same data item that appeared on its input link
at time t-1l. At time t=1, we have 7(1l)=08, which
corresponds to the fact that at the beginning of the
network operation, no specific data item appeared on

the output 1link.

EX 2: The operation of the multiply-add cell mentioned
in section 1 and shown in figure 1 may be represented

by the following node 1/0 descriptions:

£, = N & (2.3.a)

"o = ) ("in + w . ein) (2.3.b)

where weR is a given real number and €1n, Nin’ €o and

n_ are the input and output sequences of the node as

(]

shown in figure 5.

Since in any practical dynamical system any data item

produced by a computational cell at time t depends only on
the data provided to that coli at times less than t, we

immediately see the importance of the condition imposed in
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section 2.2 on the node 1/0 descriptions, namely that only
causal operators in the sense of section 2.1 are used. We
also note that with the model described above, the computa-.
tional power of each cell is not limited to simple arithmet-
ical operations. In other words, a cell could be an intelli-
gent cell that can perform elaborate calculations provided
that we can express these calculations in terms of causal

operators.

We call "network output sequences™ those sequences
associated with the IN edges of sink nodes, and "network
input sequences®" those associated with the OUT edges of
source nodes. Then the system of all node 1/0 descriptions
provides a specification of the computation performed by the
network in the form of an implicit relation between the net-
work input and output sequences. This relation will be

called the "network I/0 description®.

As a simple example, consider the hypothetical network
with the graph shown in figure 6. In this graph, we assume
that the edges directed to the left are given the color y
and those directed to the right the color x. We also follow
the naming convention mentioned in section 2.2 in identify-
ing the different edges in the graph. To complete the net-
work description, a node 1/0 description has to be specified
for each node in the graph. Assume that these are given by

the following causal relations:

For node 1: €, = n €, + 1, ] (2.4 .a)
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9 " n( Gl * LI} ] (2.4.b)
For node 2: £3 = 0 ‘2 (2.5)
For node 3: L L W n ( £3 * L ] (2.6)

Figure 162

For this network, LB and ‘1 are the network input sequences

and LI is the network output sequence. In order to obtain

the network I/0 description explicitly, we have to solve the
equations (2.4), (2.5) and (2.6), that is, we have to obtain

an explicit expression for L in terms of 61 and LPY

Cenerally, it is very difficult, and sometimes impossi-
ble, to derive an explicit solution of the system of node
1/0 equations. In the next section, we show that this task
may be greatly simplified in the case of certain networks

with a homogeneous structure.
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3. Homogeneous Systolic Networks.

By condition [A2]), any edge e€¢E is uniquely identified
by its color and one of its incident nodes. In fact, we
used this already as a convenient means for identifying

edges by their color and terminal node. Let M c cExvI be

the set of all pairs (y,v), yecE, VeV for which there is

I'
an edge e€¢E with y=col(e) and v=v_(e). Then the terminal

node u-o+(e) is uniquely given and hence the successor

function u:M -~ VI v VT is well defined by the association

(Y,v)eM, y=col(e), v=v_(e) = u(y,v)=v_(e).

In other words, if there exists an edge e with color y and

starting node v, then u(y,v) is the terminal node of e.

Given a systolic network based on the graph G-

1

(V.Eyo_,9_ ), a subset \£

G VI of interior nodes is said to

be a homogeneous set if:

; have identical IN and OUT

(H1] All the nodes in V
degrees, say m and n, respectively.

(H2]) The m colors of the IN edges of any interior node
vcvi are identical. So are the n colors of the OUT

edges of v. Denote the colors of the IN and OUT edges

of v by yl,yz,...,ym and zl,zz,...,zn, respectively.

(H3) The node 1/0 descriptions of any interior node
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vevI are generic in the sense that they may be written

in the form:

i
u(zi.V)

12

c = ri(nvl‘"vlooo'n'vn) i'l.Z,...,ﬂ

where ri,i-l,z,...,n are given n-ary operators which
are independent of the particular node in V;, 4 is the
successor function defined earlier in this section and

"3 j=1,2,...,m and ci i i=1,2,..,n are the
w(z”,v)

sequences associated with the IN and OUT edges of v,

respectively.

A network is said@ to be homogeneous if the set of inte-

rior nodes V. in its graph G is a homogeneocus set. More

I

generally, if there exists a partition
1 2 vk
vI = vI v VI u ... u I of vI into k non-empty homogeneous

subsets V%,V%,...,V?, then the network is said to be k-

partially homogeneous.

The main advantage of having a homogeneous (or b‘a:-
tially homogeneous) network is that the resulting system of
equations has a repetitive pattern,” which, in many cases,
allows us to obtain an analytical solution to the system.
This should become clearer as we proceed with the different

examples.
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To verify the operation of a systolic network, we are
generally interested in its behavior for specific inputs,
that is we wish to find the form of the network output
sequences for specific network input sequences. This is
usually accomplished by substituting the given input
sequences in the network 1/0 description and manipulating
the resulting equations to obtain the description of the

network output sequences.

As a first example of our verification technique, we
consider again the 1-D convolution network described in sec-
tion 1. The graph of this network is shown in figure 7,
wnere we assumed that the edges directed to the left have
the color 's', while those directed right have the color
'p'- The nodes of the graph are identified by the integers
-1,0,1,2,...,k+l,k+2, where nodes -1 and k+2 are sourca
nodes, nodes 0 and k+l sink nodes, and nodes 1 through k
interior nodes. The successor function is defined for any

interior node i=1,2,...,k by

K2 Py Pl P2 P P P2 P Po n
- - o o oo - * o =
node node node node @
C— Ay S [y
k+1 s, Sk Sk-1 $i41 So Sy S5 $
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ij 1+l if y=s

;" u(y,1) =

- i-1 if y=p

ﬁ!ﬂ Our goal is to verify that the network indeed produces the

i results of equation (l.l1l) for the network input sequences

described by

oL (3.1.a)

”k = Q¢ (3.1.b)
where

T(t)=n-(k~-1) ,L(t)=0

T(¢)=n PE(t)mx,

The 1/0 descripticn of a typical i1nterior node i in the
graph, lsisk, 18 given by the following causal relations
"1-1 - On (3.2.a)

= N [ai + w, - Lo ] (3.2.b)

This system of difference egquations is easily solved.

First, note that the solution of (3.2.a) obviously 1is

o - ak-1 e (3.3)
g By substituting this in (3.2.b) we obtain
: u k-i+l
- Ol n oy + w, - [ n T ] (3.4)
. -
= The solution of (3.4) is then given by lemma 1 in the appen-
dix as:
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o SN g A=l [w k- (k=3+1)+1
k+1 1745 k-j+1 ° Tx
- X o, + ; 231w 7] (3.5)
1 k-3+1 ° "k .

i=1

This is the 1/0 description for the network.

In order to find the specific form of the output

sequence oy . for the input sequences (3.l1l), we substitute

these sequences into (3.5) and obtain

- o2k-1 23-1

k
O+l e . + Eln [wk_j+1 . 0 ¢]

J
By the properties Pl, P2, P3 and P4 in the appendix, this

may be rewritten as

1
k {
- a2k-1 2(3-1) |
Okl n e 1 +nN _2 n e [wk_j+l . &)

=1 ]
«-n?%loe +ne E ad™ 1 (w €] ‘
. k“j""l ) L
=1 ]
]
- k . - ]
=n?*lg +ne [ al"l, '
Jj=1 J ﬁ

where T(nJ)-T(f)-n and "j(t)'wk-j+l £(t)-wk_j+l xt.
Finally, applying P5 of the appendix we find: ]
.
2k-1 k-1 '
°k+1 = N e ¢t + N Oen " ) ]
- n?k1l g (¢ + 7] {
’ q
« n2k-1 g , (3.6) 3

where 7 is defined by:

q
v e e a . PN Y ,_;
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T(n) = n-(k-1)
k
n(t) = L n, (t+k-]) 1st<T(7)
=1
k
- jElwk~j+l Xt +k-3 let<T(n)
k
) qglwq *t+g-1 let<T(m)

In the last line, the summation index was changed to g=k-

j+l1 1n order to provide for the same expression as in (l.1).

Evidently, equation (3.6) represents the output of the
array in a clear and precise form; it indicates that after
an 1nitial period of 2k-1 time units, the elements

n(t)=yt, lstsn-(k-1), will appear on the output link, each

separated from the other by one time unit.

A variation of the above 1-D convolution network may be
obtained by defining the I[/0 description of each node in the
network to be given by (3.2.a) and (3.2.b) with the +
operation replaced by the @ operation defined by (2.1). By
a similar analysis, 1t can be shown that the output of the

modifled network 1s described by

= o ]
°k+l fi 6 7

where T(n') = n+k-1 and

P P Y T S S VU S SO
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t
'jglwk‘j+l Xt-9+1 lstek-1
k
n (t)t% JElW "j+l xt—j+l k<ten
k
. j.t§n+lwk°j+l xt-j.'.l n+l<tsT(n').

In the previous example we applied our technique to a
homogeneous network. The technigque is equally applicable to
k-partially homogeneous networks if k is reasonably small.
In that case, a system of difference equations is formed by
writing the generic I/0 description for a typical node from

i

each homogeneous subset of interior nodes VI'

1-1,2, s ,,K.

The network I/0 description is then obtained by solving chis
system of equations. The back substitution network and the
sorting networks discussed in sections 5 and 6 are examples
of 2-partially homogeneous networks. The LU decomposition
network described in ([l] is a 4-partially homogeneous net-

work that can be verified by the same technijue.

Finally, we note that the explicit derivation of the
network I/0 description depends on our ability to solve the
resulting system of difference equations. However, even if
these equations cannot be solved explicitly, we may still
verify the operation of the network if we have an idea about
the network behavior and consequently about the seguences on

the different edges of the graph. 1In fact, we need to show
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only that for the given input sequences, the expected
sequences satisfy the system of difference equations. We
demonstrate this procedure in section 6 by verifying the
operation of a sorting network for which we could not solve

the system of.equations'explicitly.
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4. A band matrix multiplication network.

In [1], Kung and Leiserson suggested a systolic network
for the computation of the product of two band matrices

C=A*B, where both A and B have lower bandwidth kl and upper
bandwidth kz. In this section, we shall consider only the
case kl-kz-k and prove formally that the suggested network

indeed produces the prodﬁct' matrix C. Moreover, the
sequence notation used in the verification procedure will
provide an accurate representation of the I/0 data includ-
ing the input timing required for proper operation and the

timing of the output data.

In figure 8.a we show the directed graph of the matrix
multiplication network. The nodes of the graph are regularly
laid out so ﬁhat each node can be labeled by a pair (i,3j) of
integers, where i and j are the relative position of the
node with respect to the two perpendicular axes shown in the

figure. The set of c¢olors CE has three elements, namely

p, £ and 8, and the coloring function col() maps the edges
directed to the south-west, south-east and  north to the

colors p,r and s, respectively.

The network is homogeneocus; it consists of only one
type of computational cell, namely the multiply-add type
cell shown in figure 8.b. Its generic 1/0 description is

given by the causal relations:

PP P Ry . PP S
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pi,j-l =0 p. . (4.1.a)

Ti-1,3 T 0 "1, (4.1.b)

°1+1,j+l' n[ai'J+ pi,j "1.31 (4.1.¢c)
In line with the definition of homogeneous networks, this

descraiption is valid for any cell (i,j), -ksi,jsk.

As an 1i1llustration of the network topology and its dif-
[erent data streams, we show in figure 8.c¢ the general nec-
work for the special case k=1, that 1s for the case of twd
tridiagonal matrices A and B. In the figure, the

source/sink cells were omited for clarity.

In order to obtain the I/0 description of the network,
we have to solve the system of difference equations (4.1),

and express the network output sequences o and o

q.k+1 k+l,q'

~(k-1l)sgsk+l 1n terms of the network input sequences Pu.k’
. ’

and %, -k’ -ksusk. For this, consider first
’

"k,u’ %k,u
the simple equations (4.l.a) and (4.l1l.b) which have the

solutions

px,j = A pi,k

k-1
"i,J f ﬂk’j

By substituting these values into (4.l1l.c) we obtain

=N (o, + 4. _1] (4.2)

Tisl,9+1 i) i,)

where & ., = nk73d

£,3 Pi,x ' 1
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Ao By an inductive argument similar to the one given in
the appendix for lemma 1, it is easily shown that for

-(k-1) s i,3 sk+l, (4.2) has the solution:

itk k+i

q . .
n a-kaj"i-k + El n Ai-q'j-q 1«3
q
oi'j - 1
k+j
L j+k q
n Oi-y-x,-k * El A% 8y _a,4-q i3
q
» With the definition of Ai j and properties Pl and P4 we
»_' ’
find the network output sequences to be
g
. i+k
- - itk 2g-1
C S B O T Pi-q,k *
[-.
3 2g+k-i -(k-
- n "k,k-q+1] (k-1l)siek+1l (4.3.a)
. k+j
- oftd 2g+k-3J .
?ﬂ Oxs1,4 = 0 o5,k * 421 [ n Pr-q+l, k *
- n ﬂk'j_q] (k-1l)sjsk (4.3.b)
o
3 These are the network I/0 descriptions. Of course, the
network is not expected to produce the elements of the pro-
duct matrix C unless the elements of the matrices A-(ai J]
>. 4
and B-{b1 j} are fed into the proper input 1links of the
’
network with the right timing. We will now prove that the
;. network output sequences will contain the elements of C if
r— the input sequences are specified as follows:
b
[
& 4
-
.
' .
[ e




T T T

- 30 -

- p2(k+u) g2

-Ksusk
-ksusk
-ktuik

~k<{usk

are defined as follows:

lets-u

-u{tsn

lsts-u

-u{tsn

lstsen-u

n-udtsn

lstsn-u

pu'k au
- ad(k+u) .2
"kru n e ﬁu
- 0l (2k+u) 2
L& O-x,u" 0 oty
- a2(2K+u) 2
ou.-k n © ta
where
T(8,)=T(a,)=n, T(Lu)-n-(k+u).
i and the sequences § , a
For u<0
- a, (t) '1
A, t+u
[
fa 8, (t) -l
bt+u,t
For ua0
‘ { %t,t+u
!
. a,(t) =3
. L,
bt+u,t
ﬁu(t) =
..4
-0

n-udten

Roughly speaking, the input 1link Px,u * -ksusk,

(4.4.a)

(4.4.b)

(4.4.¢)

(4.4.4)

(4.5.a)

(4.5.b)

(4.5.¢)

- (4.5.4d)

contains

e e -




- 31 -

th

the u off-diagonal of the matrix B, while the input 1link

ru.k . —ksusk, contains the (-u)th off diagonal of the

matrix A. Of course the exact timing of the input data is
defined by the formulas (4.4).

For the sake of breviety, we cosider here only the

equations (4.3.a) and show that the output links 8, kel
’

-(k-1l)sisk+l will carry the elements in the lower band of
the product matrix C=A*B, including the diagonal. By a
similar procedure, one can use (4.3.b) to show that the

links Siel 3 -(k-1)€jsk will carry the upper band of C.

By introducing the specifications (4.4) of the network
input sequences into (4.3.a), we obtain for -(k-~l)sisek+l

the following formula:

k+i
- 2k+2i~-1 2 5k-i+2 .2
ai,k+l= b ot q§l (n e ai-q r N ) Bk—q+l]
X k+i
- 2k+2i-1 2 3(k-i+l) _2
L, tn L o ai-q *n e 3k-q+l
q=1
k+i
. T 2k+2i-1 2 k-i+1
Gt n e qgl ( ai-q * N 3k-q+l]

- QSk-i+2 2

where L = 0" ;. ;- With property P7 the product

term becomes

_ k'+1 _
k+2i-1 e2 T nk i+l ,’ij (4.6)
q=1

2
al,k+1 Li + N

where T('v%) = n~(k-i+l) and

L, N N ~ P |
- P _— o P P 2
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q - -
vi(t) ai_q(t+k i+l) = Bk-q+l(t)

Simplifying (4.6)'and using the definition of Lir we find

that
, k+i
- ok-i+2 2 S5k-i+2 .2 q
9 k+1™ N 8% ;_; *+ N e~ L 7,
q=1
Sk-i+2 2
where T(ni) = n-(k-i+l) and
k+i
n,(t) = L yd(t) -(k-1)sisk+l
i
q=1
k+i '
- qgl ai_q(t+k—x+l) ® 3k-q+l(t) -{k-1)sisk+1

(4.7)
Finally, from the definition of .,_,.we obtain that
Sk-i+2 _2

n e "i

o -(k-l)sisk+l (4.8)

i k+l”

Equation (4.8) describes the timing of the output data
on any 1link si,k+1' -(k-1)sisk+1. It indicates that on
8 k+l’ there will be an initial set up time of 5k-i+2
units, after which the elements "i(t)' t=1,2,..,n-(k-1i+1)

will appear separated each from the other by two time units.

We still need to show that ni(t)-c that is that

t+k-1+l't'

s carries the (k-1+1)st sub diagonal of the matrix C.
i,k+l
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To evaluate "i(t) from (4.7), we use the definitions

(4.5) to write ai_q(t+k—i+l) and Bk-q+l(t) for the values

of t between 1 and n-(k-i+l), which are the values of ¢t

assumed in (4.7). The resulting formulas are:

0 if u<(0
a(t,i,q) if u<o
/
@, (t+d)= |
a(t,i,q) if ua=0
0 if ual
¢ 0 it v<O
b(t,q) it v<o
Bv(t)' ‘
b(t,q) if va0
0 if vao

and lstsg-(k+1l)
and g-(k+1)<tsn-4a
(4.9.a)

and lstsn+g-(k+1l)
and n+g-(k+l)<tsn-d

and lstsq-(k+1l)
and g-(k+1l)<{tsn-d
(4.9.b)

and lsten+q-(k+l)

and n+g-(k+l)<(tsn-d

where, for simplicity, we introduced the notation

u s i-q' Vv = k-q+1' d = (k"'l)-il

and b(t,q)

= b

t+v,t”’

which will be used repeatédly in the remainder of this sec-

tion.

It is clear from (4.9) that the evaluation of "i(t) by

(4.7) is non-trivial and depends on the relative values of i

and q. For this purpose, we consider two different cases:
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In this case and for lsgsk+i, the inequalities u=i-q<(0 and
v=k-q+120 always hold. Moreover, we have g-(k+1)s0 and
n+g-(k+l)>n-d. Accordingly, we can use the above condi-

tions to determine the appropriate values of au(t+d) and
Bv(t) from (4.9), and with these in (4.7) we obtain the

formula:

k+i

n;(t) = L a -
i q=1 t+d,t+k+l-q

b létsn-d

t+k+l-q,t

By changing the summation index to j=t+k+l-q this is indeed

t+k

n,(t) = L a b lét<n-d (4.10)
t jat+d-k ctded 3.t

In this case we always have u=i-q s v=k-g+l. Accordingly,
we divide the sum in (4.7) into the three partial sums

k+i i k k+i

L =L + L + L

g=1 g=1 g=i+l g=k+1l

For simplicity, we refer to these three sums as Zl. 22 and

Las respectively, and evaluate them separately.

i
In the case of zl =7 7%(t). we note that the condi-
q=1

tion lsgqsi implies that vaua(0. Hence, by (4.9) we have
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a(t,i,q) b(t,q) if lsten+g-(k+l)
q -
vi(t)

0 if n+q-(k+1l)<tsn-d

By standard rules of operations with summation symbols, Zl

can be expressed as

i
L a(t,i,q) b(t,q) if lstsn-k
[
Zl = (4.11)
i
T a(t,i,q) b(t,q) if n-k<(t<n-4
g=t-n+k+1l
k
We turn next to L, = § 7q(t). In this case, we have
2 g=i+1l i

u<0sv, q-(k+1)<0 and n+q-(k+1l)>n-d. Hence, from (4.9) it
follows that

yg(t) = a(t,i,qg) b(t,q) lsten-d

which gives directly

k

22 = r a(t,i,q) b(t,q) letsn-d (4.12)
g=i+1

Finally, in the case of 83 the inequality usv<(0 holds.

Therefore, we have




J 0

q -

Vi(t) 1
a(t,i,q) b(t,q)

which gives

k+t
! g=k+1
s
L a(t,i,q) b(t,q)
g=k+1

if leteq-(k+1)

if g-(k+l)<t=n-d

if letsi

(4.13)

if i(ten-4d

Now "i(t) is obtained by adding the sums (4.11),

(4.12) and (4.13) on three different intervals for t. This

sum is given by

k+t
L a(t,i,q) b(t.,q)
q=1

(
'k i

n,(t) ={ L a(t,i,q) b(t.q)
| k+i

g=t-n+k+1l

L a(t,i,q) b(t,q)

lstei

i{tsn-k

n-k<{(tsn-d

By changing the summation index to Jj=t+k+l-q and sub-

stituting the appropriate values for a(t,i,q) and b(t,q) we

obtain
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t+k

T a,.. . b, letsi
[ o1 Ttrdey T3t
t+k

n,(t) = | L a . b, i(t€n-k
! j=t+d-k t+d.3 3.t

n

a . b, ~k<(t<n-d
) jstg’.’t—'k t+d,j "J.t n n

Note that the above formula for ni(t) is wvalid for

l€sisk+1 while (4.10) is valid for -(k-1)si=<0. These two
formulas are equivalent to those resulting from multiplying
the two band matrices A and B, which proves that for

t=1,2,...,n-(k-i+l) and -(k-1)si<k+1l, we have indeed

Mi(E) = Ceha,t = Stek-i+l,t”
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5. A back substitution network.

In this section, we apply our verification technique to
a systolic network that contains two different types of com-
putational cells, namely the back-substitution network sug-
gested in [{8]. This network performs the back substitution

operation to solve the linear system cf equations

Lu=y (5.1)
where L is an nxn non-singular, banded, lower triangular
matrix with the band width k+1, and y is a given n-
dimensional vector. The solution of the system (5.1) is

given by the formula:

yl / 11,1 i=]
J i-1
ui - (Yi = j§1 li'i-j ui_j) / 11'1 2¢isk
k
.(Y.I. = j§l 11'1_3 ui‘j) / li'i k<{isn
where 1 is the (i,j)th element of the matrix L, and Y

i,3

th

and u, are the 1 elements of the vectors y and u, respec-

tively.

Figure 9 shows the graph of the suggested network. It
is a 2-partially homogeneous network, composed of Kk
multiply/add (M/A) type cells, and one subtract/divide (S/D)
cell. The computational cells are labeled by integers such

that the cells 1 through k are of the M/A type, and the cell




T

1%

Figure (9)

0 is the S/D cell. As for the 1/0 cells, we must be careful

to assign labels to the sink cells because these labels will
be used to identify the network output links. The labels
given to source nodes are immaterial as they do not affect
the verification procedure, and consequently are not shown

in figure 9.

In the regular layout shown in figure 9, the edges
directed to the south, north, east and west are given the

colors a,b,r and s, respectively. The set VI of interior

1

nodes in G is divided into two homogeneous subsets VI

={0}
and Vf-{i:i-l,z,...,k}. The operation of the cell

represented by node '0' is described by the causal relation

pl = N [[80 - ao] + ao] (5-2)
and the operation of any M/A cell represented by a node i,
l«<isk, is described by the generic 1/0 description
Pisvl ™ N Py i=1,2,...,k (5.3.a)

01 = n[o1 <] a, p,] i=1,2,...,k (5.3.b)
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where the @ was defined by (2.1).

To solve the system of difference equations (5.2),

(5.3.a/b), we first write the solution of (5.3.a) as

P = N Py 1<isk+1l (5.4)

from which we find that

k
Prer™ U Py (5.5)

Substitution of (5.4) into (5.3.b) then gives

o,_1= 0 [0, @ &,] (5.6)

where 4, = a, * (ni'l

i pl). Using an inductive argument

similar to that in the appendix for the proof of lemma 1, we

can show that the solution of (5.6) is

k
oy = X L jz‘l nl (ay * ad-1 ] (5.7)

k
where L' is defined by L7, =7, @17, ® .... @ n.
3=13

For given pl, the network output sequence pk+1 is

easily obtained from (5.5). The next step will be to elim-

inate % from (5.2) and (5.7) and to obtain Py explicitly
in terms of the network input sequences Oyt ‘80 and aj.

j=0,1,...,k. Unfortunately, if we try to solve (5.2) and
(5.7) simultaneously, we will obtain a recursive equation in

Py which is very difficult to manipulate in general. For
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this reason, we consider only specific forms of the net-
work input sequences, namely those required for the proper

operation of the network. They are given by

a, = ak 1 e A i=0,1,....,k (5.8.a)
8y = ok e n (5.8.b)
ak = 0 (5.8.¢)

with T(xi) = T(t) = T(n) = n and

0 lstsi
Ai(E) =

lt,t-i i(t<n
n(t) =Yy, lstsn
t(t) =20 lsten

Substituting (5.8) into (5.2) and (5.7), we find that

Py = N [[nk e n - 00] + nk <) XO] (5.9.a)

k -
o. = e .® L (A¥enr, »a?t, (5.9.b)
0 5 j 1

Since 0-x=08 for any X¢R,, (5.9.a) implies the existence of

a sequence ¢ such that

Py = n e ¢ (5.10)

whence, by (5.9.b), we find that

K
ao-n"e c® ¢ [n"euj + 2tk g
J=1
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X k j
- e[c@}:‘[xj*n €1 ]
i=1

where we used property P2 to interchange‘nzj and 6. If in
addition we let
k’\

{

vy= 1 (® L A

+ ad ¢ (5.11)
=1 3

then we can substitute for % and Py in (5.9.a) and obtain

k k

k+l e vy] + N © x0]

n @ ¢ = N [[nk e n - N

which reduces to

¢ = [n - 7] + Ao (5.12)

For an explicit description of the sequence 7, we need
to examine (5.11) more closely. We start by applying pro-

perty P7 to the product term in (5.11), namely

X*ﬂji'ﬂjuj

J
where
T(uj) = min{ T(kj)-j » T(€)) € n-3 (5.13.a)
and
uj(t) = lj(t+J) * g(t) (5.13.b)

This enables us to rewrite (5.11) as

L
y = ¢ @j):‘1 ' uy (5.14)
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From (5.14) and the definition of the '+' operator, we con-
clude that T(y) = max{T(:¢) , T(uj)+j} = n, and conse-

quently from (5.12) that

T(&) = min{T(n) , T(7) . T(Xo)} = n.
Using this in (5.13.a) we easily see that T(“j) = n-j.

Now, we apply property P6 to (5.14) and explicitly describe

v by
T(y) = T(t) = n

and

0 t=1

t-1
v(e) = < L y(e-3) £=2,3,...,k

i=

L g uj(t 3) t=k+1l,k+2,...,n

Finally, with these specific descriptions of 7, xo and
v, we directly find the explicit form of the segquence { in
(5.12) to be
E(t) = (n(t) - y(t)) / Ao (t)

that is
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) R Ye / Lt £=1
i t-1
o €(t) =9 (v - j):l §(-3) Ly b y) /Ly 2stsk

. L

(Yt - jzl E(t-3) lt,t-j) / lt,t " k+letsn

».
ﬁ A comparision of this expression with the formula given

in the beginning of the section for the solution of (5.1)
shows readily that

RhSER AEAENES
«

2k+1
§ Px+1 = n ® ¢
L where T(¢() = n and §(t) = ut.
3
AR\
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6. A sorting network

The sorting network (2,9] described here accepts an
indexed set x-[xl,...,xk} of k different real numbers,

xieR, ieK=(1,...,k}, and produces as output the same

numbers sorted 1n ascending order. Figure 10 shows the gen-
eral graph of the network and the labels given to each node.
In the figure, the edges directed to the right and left are

colored s and p, respectively.
For any je¢K, let yl,...,yj be the result of sorting

the j elements xl,...,xj of X in ascending order. Then for

all (i,3) of D={(i,j))eKxK; l«i<jsk), the ranking function
fx:D*x is defined by fx(i.j)-yi.

wWith this, we will prove that if the network input

sequence m, is given by
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L e ¢ (6.1)
where T(¢) = k and E(t) = Xy then the network output

sequence 0, _; has the form

2k-1
Oks1™ 0 e 7 (6.2)

where T(n) = k and n(t) = fx(t,k).

The network considered in figure 10 is a 2-partially
homogeneous network. The cell labeled 'l' is a simple latch

cell whose operation is described by

aZ = n (6.3.a)

1

while the [/0 description of the cells i=2,...,k is given by

"i-l = N maxo(wi,ai) (6.3.b)

o] = ] minb(”i'ai) (6.3.¢)

i+l
where maxo and mino were defined in section 2.1. In other
words, the cells 1i=2,...,k are comparision cells which

operate as follows: At any time t, if neither one of the two

inputs ai(t) or ﬂi(t) is a don't care element &6, then the

cell compares the two inputs, and produces as output at time

t+1l, the largest and the smallest numbers on the links Pi-1

and s respectively. However, if any of the inputs is 9,

i+l
then the cell acts as a simple latch cell, that is, |if

o, (t)=0 or m (t)=8 then
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"i-l(t+l) = ﬂi(t) and °i+l(t+l) = ai(t)

To obtain the network [/0 description, the system of

equations (6.3.a/b/c) should be solved for °k+1' However,

the recursive nature of (6.3.b) and (6.3.c) makes this very
difficult, if not impossible. One possible alternative is

to suggest a tentative value for the sequences 7, and o.,

i i
and then to verify that these suggested solutions indeed

satisfy (6.3). Of course, any assumed value for 7. should

i
reduce to the input sequence (6.1) for is=k.
Let us assume that L and o, are given by
7= 0"t e a leiek (6.4.a)
o, = a¥*172 ¢ 4 2eiak+l (6.4.b)

where T(ai) = T(Bi) = k,

x, letsi
@, (t) =
max(xt,tx(t-i,t-l)} i(tsk
and
fx(t,t+i—2) lestsk+l-i
Bi(t) =
- tx(t,k) k+l-i{(tsk
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It is very easy to verify that (6.4.a) reduces to (6.1)
for i=k. Hence, our next step will be to check that (6.4)

does satisfy (6.3). For i=1l, (6.4.a) reduces to

where T(al)-k, and

Xy t=1
a,(t) =
.maxb(xt,fx(t-l,t-l)) 1<t¢k
Since tx(j,j) is the maximum element in
{xl,xz,...,xj}, it follows that xl-tx(l,l) and

maxo[xt,fx(t—l,t-l)}-fx(t,t). Hence, we may write

al(t) = fx(t,t) lstsk

But from (6.4.b), we obtain for i=2

k
o2 = N O Bz

where T(Bz) = k and pz(t) - tx(t,t), lstsk, which

proves that ‘2 - a,, and hence o, = n m -

The next step is to show that (6.4) does satisfy
(6.3.b). For this, we sustitute (6.4) into the right hand
side of (6.3.b) and denote the resulting sequence by p.
This gives
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p =N maxe,(nk_i e a, , ak+ti=2 g 8,) 24iek

Using property P2 to interchange n2(i-1) and e in the

second operand of max, we obtain

p = o~ (i-1) o 7y (6.5)

where v, = max,{a; , ni-1 8,). By definition of max,, it

o]
follows that T(vi) = T(ai) = k, and

ai(t) letsi-1
Vi(t) =
max[ai(t),ﬂi(t-i+l)} i-1l(tsk

Hence with the definitions of ai(t) and ﬂi(t) we obtain

xt letsi-1
71(t) - max(xt ’ fx(t-i+l,t-l)] t=i
max(max{xt , fx(t-i.t-l)} ' fx(t—i+l,t-1)}

i(tsk

Because of max{ max{a,b} , ¢} = max{a,b,c}, and

tx(t-i,t-l) < fx(t-i+1,t-1), we may rewrite v, as

xt lstsi-1
71(t) -
max{xt ' tx(t-(i-l).t-l)) i-1(tsk

from which we find that vi(t) - ai-l(t)' and hence, by
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(6.5) and (6.4.a), that p = "i-l' This proves that (6.3.b)

is satisfied for the values of 9, and ", given by (6.4).

Finally, to check that (6.4) does satisfy (6.3.c), we
substitute (6.4) into (6.3.c) and denote the resulting

sequence by 7. This gives

7 = a ming(2® ! 6 a, , a¥*172 6 4,) 24isk
i ‘i
k-i+l . i-1
= N =) nuna(ai r N ﬁi}
In view of
i-1 i-1

mino{ai r Bi} = 1 ®y

where T(wi) = T(Bi) = k and

min{ai(t+i-l),ﬁi(t)) let€k-(i-1)
Wi(t) =
ﬁi(t) k-(i-1)<{tsk
we write
r = nk+(i+l)—2 e e (6.6)

From (6.6) and (6.3.c), it follows that 7 = %i+l only
it v, = B4 To prave this, we substitute the definitions

of ai(t+1-l) and ﬁi(t) into wi(t) and obtain
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min(max(xt+i_1 . fx(t—l,t+i-2)} ’ fx(t,t+i-2))
wi(t)' lstsk-(i-1)
fx(t,k) k-(i-1)<{t=k

But from lemma 2 in the appendix, and the fact that

fx(t,t+i-l) = fx(t,k) for t=k-i+l, we may write pi(t) as

fx(t,t+i-l) lstsk-i
p,(t) =

fx(t,k) k-i<t=k
It follows that wi(t) = Bi+l(t) and therefore that
T = 01 This completes the proof that the sequences L

and o, of (6.4) indeed satisfy the system of equations

(6.3).

Now that (6.4.b) is known to be a valid formula for the

sequence o0,, we can easily obtain the network output

sequence 0, . by setting i=k+l. This gives

2k-1
Tpse1 ™ 1]

® Bye1
where T{”k+l) = k and ﬂk+l(t) = fx(t,k), lst€k which is

identical with the expected output seguence (6.2).
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7. Concluding Remarks:

This work was meant to contribute to the area of sys-
tolic architacturés in three different ways, namely, by pro-
viding a mathematical model for systolic networks, an unam-
bigious description of its input and output data, and a

technique for the verification of its operation.

The central concepts in the present modél are those of
data sequences and sequence operators. Although we only
defined the few operators that were used in the examples, it
should be clear that other sequence operators may be intro-

duced to model other types of computational cells.

A further step in this area is to develop a more com-
plete sequence algebra to provide a basis for a solvability
theory of the resulting system of difference equations on
sequences. More specifically, it would be desirable to
determine under which conditions an explicit analytical
solution for the system of difference equations can be
obtained. For a given network, this might determine, the
properties to be satisfied by the successor function g and
the node 1/0 operators in order to verify analytically the
operation of the network. If a sufficiently flexible alge-
bra of this type were available, our model might prove to be

very powerful in the design of new systolic networks.

At this point, we note that even if we cannot solve the

resulting system of equations analytically, we can still use
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a numerical iterative procedure to solve it. This approach
is very close to the simulation of systolic networks, but

appears to be more general and systematic.

Finally, we note that throughout this paper we assumed
the systolic network to operate synchronously. However, the
same model and techniques can be used for asynchronous net-
works. The only difference is in the interpretation.of‘the

th

i element of a data sequence, which now has to denote the

ith data item that appeared on a communication link instead

of the data item that appeared on that link at time t=i.

A - e oacoa USSP VPO G - x -
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Appendix

In the first part of this appendix, we list some pro-
perties of sequence operators that have been used in the
paper. The verification of these properties is straight
forward from the definitions of the operators involved. In
the second part of the appendix, we prove two lemmas; the
first gives an analytical solution to a difference equation
that appears frequently in the verification of networks con-
taining multiply/add cells, while the second one proves an

equality that was needed in section 6.

Let ¢, ¢ and nj j=0,1,2,...,k be sequences 1in Eo. and

weR; then

Property Pl: a N & =N 4

Property P2: n(r+l)k ef ¢ = eF nk ¢
Property P3: w . | ek ¢E] = ek ( w . &]

w. [0 g] =nf [ w. €]

Property P4: For any binary operator 'op' extended from Ro

to Eo. we have

a* (¢ ‘op’' (] = X ¢ ‘op’ n* ¢

b 4

ef (¢ 'op' ¢] = ©F ¢ 'op' 6F ¢
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Property P5: If "J j=1,2,...,k are such that T(nj)-n, then

k
where T(®) = n-(k-1) and g(t) = T nj(t+k-j).
=1 ‘

The next result uses the ® of (2.1):

Property P6: Let the segquences "J' j=0,1,...,k satisfy

4

T("j) = n-j, then

2 k
@07, 00" 1, ® ... 00" 9 =7

where T(v) = n and

t-1
: L nj(t-j) t=1,2,...,k
=0
y(t) =
k
L n,(t-3) tek+l,k+2,...,n
3=0 3
Property P7: Given €'(€§°, then

¢ *nf g =nf v
where 7 is described by

T(y) = min{T({)~r , T(&)) and y(t) = {(t+r) * §£(L).

Lemma 1: The difference equation

°1+1 = N a1 + A i=1,2,...,k+l (a.l)

i

has the solution
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r-1 .
o. = af 1 g & L a1 4 r=2,3,...,k+1l. (a.2)
r 1 §=1 r-j
Proof: The proof uses induction on i. Evidently, for i=l in

(a.l) we obtain
az-ﬂol+Al

which is identical to (a.2) for r=2. Hence assume that for

any r=1,2,...,k, o, is given by (a.2), then from (a.l) it

follows that

Oreyr ~ no, + 4,
r-1
-n[nr'lol+znj'ln ] + 4
3=1 3 r
r-1
r 3
= 1" o, + n’ A + A
1 j§l r-j 4
r-1
r ]
=N o, + L 07 A _
1l j=0 r-jJ
r
r j-1
- +
a0 j§1 L

which proves that Orsl is also given by (a.2).

Lemma 2: let fx be the ranking function for the set x-{xl,

xz,...xn}, as defined in section 6, then

min{max{x, . tx(i-l,k-l)l ' tx(L,k-l)} - tx(i,k) (a.3)
Proof: Let Yyr coor Yoy be the result of sorting Xio eoee

X 1 in ascending order, and Zyr ceer 2y the corresponding
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result for Xy cees X - Hence, fx(i-l,k-l)-xi_l,

fx(i,k-l)-yi and fx(i.k)-zi. Now consider the following

cases:

1) If Xy < Yi-1 < Y; then the left side of (a.3) is

min{max{xk ’ Yi-l) ’ Yi} = min{Yi_l v Yi} = Yi-l
Since Zyre..02) are obtained from ) STRERED V) by inserting
Xy in some position before Yi-1+ Wwe immediately see that

Yi-1 T %

2) 1If Yi1 < Xy < yi,-then the left side of (a.3) is

min{max{xk ’ yi_ll ’ Y1} = X

and in this case it is clear that X = zi.

3) If Yi-1 < Yy ¢ Xy o then the left side of (a.3) is equal
to Y- which in turn is equal to z, because, in this case,

X, 1is inserted in some position after Y-
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